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Abstract A centimeue-sized single grain of the perfect AlPdMn icosahedral phase was grown 
by slow cooling from the melt. It has been fully characterized to be of @ect icosahedral 
symmetry, i.e. without any frozen-in phason strain. The dynamical propties  of this icosahedral 
phase have teen studied by means of inelastic neupon scattering measurements on a kiple-axis 
spectrometer. The response function S(Q, a) was measwed around several Bragg reRections 
and along the high-symmetry twofold, fkefold and fivefold axes of lhe icosahedron. In the 
long-wavelength limit there are well defined phonons whose widlh is limiled by the insrmmenfal 
resolution. The isotropy of acoustic modes is verified and the corresponding sound velocities 
are in good agreement with ultrasonic measurements made on the same sample. At shoner 
wavelenglhs. gaps are expecled. By analogy with ID models and electron densily of states 
calculations. the positions in reciprocal space where the strongest gaps are expected may be 
estimated. This defines a set of three main pseudo-Brillouin zones which are quasiperiodically 
stacked around each strong Bragg reflection chosen as the wne cenIre. In the h i t  of the 
insmental  resolution no gap could be detected, even when two branches crossed Longitudinal 
and transverse modes become dispersionless for an energy equal to about 3 THz. A 4 THz optic 
branch is associated with the longitudinal mode. The energy width of Ihe phonons is resolution 
limited for excitations below 2 THz bul increases rapidly to reach a maximum value equal 
to I THz. For transverse modes propagaiing along two-, three. and fivefold axes this abrupt 
broadening is found to be isotropic and occurs for q lying between 0.4 and 0.7 A-’. This 
broadening is interpreted as being a consequence of a continuous distribution of dispersionless 
modes in the range 2-4.5 THz. TWO main ’optic bands’ cenked on 3 and 4 THz may be defined 
in this region. 

1. Introduction 

The atomic structure of quasicrystals is now best understood via higher-dimensional 
crystallography. Periodicity is recovered in the higher-dimensional space and the structure 
may be described by a set of atomic surfaces decorating the periodic high-dimensional 
lattice (for recent reviews see [ I ]  and 121 and for an introduction to the subject see [3]). 
The calculation of the dynamical response of quasicrystals remains difficult, however, since 
atomic surfaces are not point-like objects and the Bloch wave expansion is not an appropriate 
description of waves propagating in a quasilattice. 

Several theoretical studies of the dynamical properties of quasicrystals have been 
performed, mainly on one-dimensional (ID) quasiperiodic chains [4-21] (for reviews see 
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[22] and [30]), but also for two- and three-dimensional (3D) models using large unit cell 
periodic approximants [23-281. The main features predicted for the onedimensional case 
may be summarized as follows: in  the long-wavelength limit where the quasicrystal is 
described by a continuum, there is a linear dispersion relation; at shorter wavelength, the 
vibrational density of states exhibits a dense set of gaps arranged in a self-similar manner 
and wavefunctions are defined as ‘critical’, i.e. neither extended nor exponentially localized. 

As may be expected, the situation is more complex when going to the 3D case. In 
the long-wavelength limit, there is still a linear dispersion relation, with isotropy imposed 
by the high symmetry of the icosahedral point group. For shorter wavelengths it is not 
yet clear whether states are localized or extended. Los eta1 [26] calculated the dispersion 
relation for various periodic approximants to the 3D Amman tiling. Their results show 
dispersion relations which are in some sense similar to the I D  case, although much more 
intricate. For instance, one may fqllow a transverse acoustic branch with a gap opening 
at each the Brillouin zone boundary crossing. The energy width of these gaps increases 
with the wavevector. As may be expected there are a large number of optic modes. Their 
density increases when the energy increases. When calculating the inverse participation 
ratio for this model, which is a measure of localization, only very high-energy modes show 
a high degree of localization while other modes are rather extended. Similar results were 
obtained by Hafner and Krajci for an AlZnMg atomic model 1271. In contrast, a calculation 
performed by Poussigue er al [28], for an AlMD quasicrystal model, seems to show that 
localization indeed occurs, even for relatively low-energy modes, leading to a broadening 
of the response function S(Q, w). Finally, calculations carried out by Kasner er al [29], 
on a 3D atomic model with three different types of atom, show a rather smooth vibrational 
density of states without any gap. 

Experimentally two icosahedral phases, of different atomic structures, were studied: 
i-AILiCu [30,31] and i-AICuFE 132,331. The isotropy of acoustic modes has been 
confirmed in both samples, and was also observed in the cubic approximant R-AILiCu phase. 
Dispersion relations were measured showing pseudo-zone boundaries. The comparison of 
higher-energy modes measured in both the icosahedral and the R-AILiCu phase showed 
differences which are consistent with an enhanced degree of localization of these excitations 
in the icosahedral phase [31]. 

We present in this paper results of measurements performed on an AIPdMn single 
grain. The atomic structure of this icosahedral phase is similar to that of AlCuFe [34-361 
but presents a different local order from the i-AILiCu phase [37]. In section 2 we recall the 
basic notions concerning inelastic neutron scattering measurements. Predictions concerning 
the acoustic modes and the opening of gaps are discussed. In section 3 details of the 
instrumental configuration, data acquisition, and analysis are given. In section 4 we present 
the experimental results. 

M de Boissieu er al 

2. Measuring the phonon dispersion relation 

We recall here the basic notions which are necessary to understand the inelastic neutron 
scattering measurements performed on a triple-axis instrument. Although this might seems 
trivial, we find it necessary to clarify the interpretation of experimental results. 

In a triple-axis experiment a neutron with incident wavevector ki is inelastically scattered 
into a solid angle dS2, with a final wavevector kf. The experimental quantity measured is 
the inelastic differential cross section which is related to the response function SfQ, o) by 
the relation [38] 
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d20/dQdE = (kt/ki)S(Q, 0) (1) 
where the momentum transfer Q is equal U) kr - IC, and the energy E transferred to the 
sample is ho = (h2/2m)(k: - k:). The response function is the double Fourier transform 
over time and space of the correlation function G(R, t ) .  

Determining phonon dispersion relations consiswi of assigning each measured excitation 
to a given branch. This can only be handled in general for simple periodic structures with 
a few atoms in the unit cell [39]. For a periodic structure with n atoms in the unit cell the 
response function is a sum over the 3n modes: 

where j is the label of a given branch. For each bmnch the phonon wavevector 
corresponding to inelastic measurements is defined by the relation p = Q - G, where 
Q is the momentum transfer and G is the position vector of the zone centre (Bragg peak) 
closest to Q in reciprocal space. In the harmonic approximation the response function is 
related to the inelastic structure factor by 1391 

sj(Q, 0) = ( n ( 4  + i $ ) / ~ j ( d F m ( Q ) a ( ~  zk o j (d ) .  (3) 
The first term in angular brackets describes the phonon population at temperature T ,  with 
the upper and lower signs corresponding to phonon creation and annihilation respectively. 
The inelastic structure factor &“(Q) involves a sum taken over all atoms in the unit cell: 

F,.(Q) = M;’’’bkeL(q). Qexp(iQ. n) exp(-w) (4) 
k 

where bk is the scattering length of the atom k ,  e: the polarization of the j th  mode and 
the position of the atom in the unit cell. For simple shllchlres with only a few atoms in the 
unit cell, the contribution of the different branches may be easily distinguished by means of 
the scalar product e: . Q in expression (4). For more complex structures (up to ten atoms) 
this is no longer true and the usual procedure is to compute the inelastic structure factor 
using a model and then look for places in reciprocal space where only a few modes have a 
significant, measurable, inelastic structure factor. 

In general measured phonons do not have an infinite lifetime because of anharmonicity. 
interaction with defects, etc. This produces a broadening of the excitations which are 
no longer delta functions as in expression (3). This is taken into account by fitting 
the experimental constant-Q spectra with the response function of a damped harmonic 
oscillator convoluted with the instrumental resolution, which is a natural generalization of 
expression (3) 1391. As a result of the fit, phonon frequencies and inelastic structure factors 
are evaluated, together with the energy width which is related to the phonon lifetime. 

For quasicrystal materials such a simple situation does not hold any longer. Unlike 
the case of incommensurate structures there is no underlying periodic structure which may 
be used as a guide for the description of the dispersion relations. Since the unit cell is 
infinite, the Brillouin zone shrinks to a point and there are an infinite number of modes. 
The only way to interpret data would thus be to compute the response function starting from 
a realistic atomic model and potential interactions, and compare it to experimental results. 

This situation may seem depressing, but fortunately there are a few rules of thumb 
that may guide the measurement and their qualitative interpretation. In particular there are 
simple predictions concerning acoustic modes on one hand, and the location and energy 
width of gaps on the other hand. 
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Figure 1. 'Twofold scattering plane of the AlPdMn Figure 1. %ofold wiprocal plane showing the 
icosahedral phase. The areas of the spots are strongest 'mass' smcture factor Fm (see text). The 
proportional to the intensities calculated with the area of each spot is proportional to F,. The trace on 
proposed model. Indices of labelled p e a k  are given the twofold plane of the first three imponant Brillouin 
in lable I. zone boundaries is indicated together with Ihe labelling 

of imponant points. Corresponding indices are given 
in lable 2. This set of pseudo-zone boundaries may be 
placed around each of the smng Bragg reflections of 
figure 1. 

2.1. Acoustic modes 

In the very long-wavelength limit (1q1 -+ 0), where the quasicrystal may be treated as a 
continuum, one expects to have well defined collective excitations. This is the only region 
where there is a direct link between the measured spectra and a single-phonon branch. 
Because of the high symmetry of the icosahedral point group there are only two different 
acoustic modes, one longitudinal and two degenerate transverse modes. In this region the 
dispersion relation is linear, with a slope related to sound velocities, and given by 

o r < L . ) ( d  = W L )  . IPI (5) 

where T and L stand for transverse and longitudinal modes. 

function of acoustic modes can be written 
Performing a Taylor expansion in expression (4), it can be shown that the response 

ST~LI(Q. 4 = WJ) + $ f i ) / w r d q ) ( e n L ) .  Q)' . F;(G) * @J k q.[L,(q))  (6) 

where eT,LI is a polarization vector orthogonal (parallel) to the phonon wavevector q 
corresponding to transverse and longitudinal polarization and F,,(G) is the elastic structure 
factor of the quasicrystalline structure. The impoltant part in this relation is the usual 
(eT,L, . Q)21Fe~(G)12 factor which tells us that acoustic modes should be measured at high 
momentum transfer value and close to a strong Bragg peak in order to have the largest 
possible signal. For a general relative orientation of q and Q. both the transverse and the 
longitudinal modes will give a contribution to the response function S(Q, o), but, as it is 
usual, this scalar product allows us to choose regions in reciprocal space where only one 
acoustic mode will contribute. 
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Figure 1 shows the experimental scattering reciprocal space plane. This is a twofold 
plane which contains all the symmetry axes of interest, i.e. two-, three-, and fivefold axes. 
Some of the strongest spots are labelled and their corresponding indices are given in table 
1 1411. Although, in principle, there are Bragg reflections everywhere in reciprocal space. 
only a finite number of them have a measurable intensity. As a consequence of relation (6). 
measurements were performed close to Bragg reflections, A, B, C, D, E. D’, G, and H well 
defined acoustic modes are expected close to these peaks. 

Table 1. Labels and indices of some smng reflections shown in figure I .  Indices are given 
following the scheme of Cahn etol [42] and in lhe primitive unit cell. In figure 1 Ly is a twofold 
reflection equivalent 10 D. 

Label N M Mu h/h‘ k/k’ Ill’ nl nz n3 n4 n, ns Qw(A-l) 

A 18 29 12 IR 2/3 010 1 2 1 -1 1 1 2.917 
B 28 44 12 2R U4 O/o 1 3 1 -1 1 1 3.606 
C 20 32 30 U4 0/0 010 1 2 0 -1  2 0 3.068 
D 52 84 30 416 0/0 0/0 2 3 0 -2 3 0 4.963 
E 46 73 60 316 0/1 OB 2 3 0 - I  3 0 4.638 
G 46 13 60 ID 4 5  OB 2 3 1 -2 2 1 4.638 
H 70 113 60 In 4il OD 2 4 1 -2 3 1 5.757 

2.2. Gap opening 

Due to the lack of periodicity there are, in principle, an infinite number of gaps opening in 
the dispersion relation. Following the procedure used for the ID case [ l l ,  13,181 and for 
electronic properties [40,41 I, one can however estimate where the strongest gaps should be 
located for the AlPdMn icosahedral phase. For electronic properties this corresponds to the 
weakly perturbated free electron model, whereas for phonons the description corresponds 
to a weak perturbation of the monoatomic Bravais lattice. 

Dynamical properties of the ID Fibonnacci chain have been widely studied, and we 
first recall the basic results obtained when a perturbative approach is applied [ l l ,  13,181. 
The Fibonnacci chain is a quasiperiodic stacking of two segments, a long and a short one. 
The phonon dispersion relation may be described starting from the dispersion relation of 
the monoatomic chain. The quasiperiodicity is introduced as a weak perturbation in a v q  
crude first approximation. This, however, ailows us to locate all important gaps in the 
pseudo-dispersion relation. A gap opening results from the reflection of the phonon wave 
on a Bragg plane. As a consequence, if a gap opens at G + q, where G is a vector of the 
quasiperiodic reciprocal lattice, then 2q is also a vector of this reciprocal lattice. It can also 
be shown that the energy gap width is proportional to F(2q). where F is the structure factor 
of the ID quasiperiodic chain. Using these relations one can then easily locate the position 
q of the few important gaps by computing the structure factor F(2q). The locations of 
these gaps define pseudo-Bnllouin zone boundaries. Each time the acoustic branch crosses 
such a special point there is a gap opening. the dispersion relation presenting a horizontal 
slope. Because of inflation properties of the Fibonnacci chain there is a series of gaps whose 
position scales with 5 ,  the golden mean, and whose energy width increases [l I, 13,181. In 
this perturbative approach the ‘envelope’ of the dispersion relation is that of the monoatomic 
periodic chain, which implies that the upper value of 2q to be considered in the calculation 
is given by the period of monoatomic chain. 
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It is interesting to compare these results to the response function calculation performed 
by Benoit er al (see for instance their figures 4, 5, 6 in [19]): this is a simulation of a ID 
inelastic neutron scattering experiment and it has been found to be very helpful in 3D data 
interpretations. At first glance the situation seems to be much more complicated. However 
the positions and relative intensities of the gaps are well predicted. Close to strong Bragg 
peaks there are well defined acoustic modes, whose dispersion relation shows gaps. Only 
the two or three strongest gaps are important and would be 'measurable' in this case. One 
should note however that in the high-energy region, there are many optical modes whose 
presence cannot be accounted for by this simple perturbative approach. 

10000 9. 
c 

Figure 3. Elastic q scan along a fivefold axis. 
All peaks belong to the icosahedral phase. Some 
of them are indexed in the scheme of Cahn erol 
~421. 

0 0 
246 2.50 2.54 286 

a par k') 

Flgure 4. Elastic scan lhrough two Bragg reflections with a large QFT difference. F'eaks are 
resolution limited and do not show any QpT dependence. 

We extend this calculation to the AlPdMn icosahedral phase, following the procedure 
used previously for electron density of state calculations [40,41,43,44]. In 3D the starting 
structure could be that of pure AI, with the corresponding dispersion relation. This is 
justified because the alloy mainly contains AI atoms, and also because sound velocities in 
the AlPdMn icosahedral phase are found to be very close to that in pure Al. In the 3D case 
the reflection of a phonon with a wavevector q on a Bragg plane G occurs if the following 
relation is fulfilled: 

(7) 2q * G = ~klG1~. 



Dynamics of the AlPdMn icosahedra[ phase 495 1 

FROM 0 

200 

100 

Flgure 5. Constant-Q energy' scans measured 
belween points D and E. Points represent 
experimenlal data and the full curves are 
the results of the fit by a damped harmonic 
oscillator. (a) Starting f" the Bragg D pealr. 
The q value (taking D as origin) wrresponding 
to each scan is indicaled The value q = 
0.35 A-' conesponds to the mid-point Weea 
D and E, i.e. to a pseudo wne boundary X5. The 
main exciration has a width which is resolution 
limited. (b )  Stating from the Brag E peak. 
One can see both excitations wmine hom E 

100 

50 

Figure 6. Dispnion relations around point D. The linear dispersion of and 
longitudinal acoustic modes, according to ultrasonic sound velocity measurement is shown 
as full smighl lines in the figure. Broken lines are guides for the eye. (n) Dispersion belween 
r point D and r point E: both acoustic branches originating f" D and E can be followed. 
There is no visible gai~ when the two branches c m  at Xs. (b) Dispersion between r point 
E and F which is an Xz wne boundary point the awustic bench originating fmm E can be 
followed. The modes around 3 THz correspond to acoustic modes originating from D. These 
branches are labelled TD and Lo on the figure, companding to transverse and IongiNdinal 
modes. There is a dispersionless optic mode mund 4 THz (c) Dispersion between X5 and F: 
we mainly measure excitations ariginating from D. In Xs we see mosUy the transverse mode, 
whereas the longitudinal mode is seen in F. (d)  Dispersion between D and i? the longitudinal 
mode tewmes dispersionless rapidly. An optic mode around 4 ' lHz is visible. 

G is a vector of the quasiperiodic reciprocal lattice. The intensity of this gap is also 
proportional to the structure factor F(G) [40,41]. However we have to take into account 
two e f f m :  the quasiperiodicity and the introduction of Pd and Mn atoms with a mass 
significantly different to that of the Al. In calculating the structure factor this is roughly 
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taken into account by introducing weights inversely proportional to the square mt of the 
mass of the different atoms. To locate the strongest gaps we define a general 'mass' structure 
factor Fm as 

M de Boissieu et al 

where i is for the atom (AI, Mn or Pd) and Fi is the structure factor of the corresponding 
sublattice. G is a vector of the quasipenodic reciprocal lattice. Fi is calculated using a 
model derived from neutron and x-ray single-crystal data 1361. The result of this calculation 
is presented in figure 2, in which the area of each spot is proportional to F,(G). 

When only the strongest gaps are considered, the relation (7) defines a series of 
intersecting planes which can be named pseudoBrillouin zone boundary. Starting from 
a zone centre there are three successive shells. They are represented in figure 2 around 
the origin chosen as the zone cenht. The first pseudo-zone boundary is defined by the 
intersection between a triacontahedron and a dodecahedron: the two symmetry points which 
define this volume are Xs on a fivefold axis and Xz on a twofold axis, following the labelling 
of special points proposed by Niizeki and Akamatsu [43,44] (also see table 2). There is then 
a second shell defined by the intersection of an icosahedron and a dodecahedron (broken 
lines in figure 2). and finally the same volume, r times larger, with special points Lg and 
L;. The associated Bragg peaks are stronger than for the previous volume, so that this is the 
second 'important' pseudo-zone boundary to be considered. Similarly to the ID case, the 
upper limit to be considered is given by the pure AI zone boundary, i.e. 2q N 2 A-'. Gaps 
are expected to be evidenced easily in the low part of the 'dispersion relation', i.e. in the 
region where acoustic modes are still well defined. From the experimental point of view, 
this implies that the important zone centres are those corresponding to strong Bragg peaks, 
where acoustic modes are intense. Around each strong Bragg peak chosen as a zone centre 
there is thus a series of pseudo-zone boundaries. Each time the acoustic branch crosses such 
a zone boundary, a gap will open up and the dispersion relation will present a horizontal 
slope. 

Table 2. Indices of ihe Bragg reflections conesponding to some of ihe special poinu of the 
pseudo-Brillouin wne (see figure 2). The position of lhe special point is given by Q,/Z. 'Ik 
last column indicates the value of Fm(Qm) calculated with equation ( I )  (see text). Labels refers 
to chose proposed by Niizeki and Akamutsu [43.44] all indices are given in the primitive unit 
cell 1421. 

Label N M Mu hlh' k l k '  1/1' nl n2 ns nd ns ns Qp,(A-') Fm(Qpn) 

XJ 2 I 12 1B 0/1 OB 1 0 0 0 0 0 0.689 1.0 
Xz 4 0 30 2/0 WO OB 1 0 0 -1 0 0 0.724 0.80 
L; 3 3 20 1/1 IB OlO 0.5 0.5 0.5 -0.5 05 -0.5 1.015 0.72 

3 4 12 0/1 1/1 OX, 05 0.5 05 -0.5 0.5 0.5 1.114 0.30 

L; 7 1 1  12 111 ID. WO 05 1.5 0.5 -0.5 05 0.5 1.803 1.70 
L; 6 9 2 0  In On OB I I O  0 I O  1.642 1.10 

One may wonder what the difference would be between a quasicrystal (w) and a 
periodic approximant. If we had the 1 /1  cubic approximant to the AlPdMn system, the 
strongest Bragg reflections would be located at almost the same place in reciprocal space 
except for small distortions. The same series of important zone boundaries will thus be 
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defined, but now obviously periodically stacked The corresponding Brillouin zones are 
distorted and do not show icosahedral symmetry, but strong gaps will be located at almost 
the same place. The only difference from the QC phase, in that respect, would be the 
sequence of gaps which is periodic in one case and quasiperiodic in the other case. 

Finally, looking at figure 2, one also understands that a gap, if any, has very little 
chance to show up on the general vibrational density of states. since. a spatial averaging is 
performed. The 9 position of gaps will change slightly, because the Brillouin zone is not a 
perfect sphere, leading to a smearing of the gap in the density of states. 

To describe the experimental results we will adopt a simple classification. Since the 
term phonon has a clear meaning only in the acoustic regime, each strong Bragg peak 
is considered as a zone centre. Starting from these points, the dispersion relation is 
presented in an 'extended zone' scheme. Around each of these r points there is a series of 
quasiperiodically stacked pseudo-zone boundaries. The term 'pseudo-Brillouin zone' refers 
to the location of reciprocal space where strongest gaps are expected. 

Along these lines phonon dispersion relations have been measured around several zone 
centres and along directions joining a r point to points XS, X2. L; and L;. 

3. Experimental details 

The AlPdMn phase, discovered by Tsai et af [45,46], can be obtained by slow cooling from 
the melt A single grain of approximate size 1 x 0.7 x 0.5 cm was obtained by the standard 
Bridgman growth technique 1471. Its composition was determined to be A1.5~.7Pd~~.7Mny,n9.6 
1471. Its quasicrystallinity and quality were checked by y-ray and elastic neutron diffraction 
measurement. All of the sample diffracts, and no other phase was detected. The overall 
mosaicity is of the order of 0.8". the sample being built up of about ten slightly misoriented 
subdomains each with a mosaic spread smaller than 0.1". Figure 3 shows a typical Q scan 
taken along a fivefold axis. There is no phason strain in the sample since Bragg reflections 
exhibit resolution limited widths when measured by both elastic neutron scattering (figure 4) 
and high-resolution x-ray diffraction 1471. 

The sample was oriented to provide measurements in a twofold scattering plane which 
contains all the strong Bragg reflections (figure 1). Inelastic measurements were performed 
at the Orphh reactor of the Labomtoire Uon Brillouin, on the IT triple-axis spectrometer 
with pyrolytic graphite (PO [002]) as monochromator (vertically bent) and analyser. First, 
constant-kf scans (2.662 A-') were canid out to measure phonons at room temperature, 
using either a flat or a bent analyser with an energy resolution of 0.35 THz. Tests made 
with silicon crystal showed that the resolution function obtained with the bent analyser was 
well accounted for by a pseudo-collimation of 43' x 43'. the signal being about twice that 
obtained with the flat analyser. Working with the bent analyser reduces the 9 resolution, 
but this was not an important issue in OUT experiment as will be shown in section 4. In 
a second step, similar to the procedure used with an AlCuFe sample [33], measurements 
were performed at 600 K with a bent analyser. This setting was used to look at high-energy 
excitations, where the signal is rather weak. A careful comparison of the results obtained 
at room temperature and at 600 K did not show any difference in the positions and widths 
of the excitations. Results of these measurements are presented in the following section. 
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4. Experimental results 

4.1. Acoustic modes 

In the acoustic regime well defined transverse and longitudinal excitations are measured 
(figure 5): the response function presents peaks whose width is limited by the instrumental 
resolution, and the correspondence between S(Q,  0) and the phonon dispersion curve is 
tracked out following expression (6). The linear character of the dispersion relation holds 
for q values up to 0.3 A-' for transverse modes and up to 0.2 A-' for longitudinal modes. 
In this region the measured acoustic excitations have a resolution limited energy width. 

The isotropy of transverse and longitudinal modes propagating along different symmetry 
axes has been verified. Sound velocities were determined to be equal to 3.5(&0.1) x 
16 m s-I and 6.3(f0.3) x IO3 m s-l for transverse and longitudinal modes respectively. 
This was obtained by averaging eight different series of measurements for transverse modes 
propagating along two-, three-, and fivefold axes and three series of measurements for 
longitudinal modes propagating along two- and fivefold axes. This result is similar to those 
obtained for AlCuFe [32] and AlLiCu [30,31] quasicrystals. Note that the isotropy of 
acoustic modes was also observed in the crystalline R-AILiCu phase [311. These results 
are also in good agreement with ultrasound measurements made on the same AIPdMn 
sample [48]. The velocity of ultrasonic waves propagating along a twofold or a fivefold 
axis have been found to be 3593(&3) m s-l for transverse modes and 6520(%10) m s-' 
for longitudinal modes. In the ultrasonic experiment the isotropy was also checked to a 
precision of one part in 104 for waves propagating along a twofold direction with different 
polarizations. 

Away from the acoustic regime the response function S(Q.w) has been measured 
in various locations in reciprocal space. It will be seen in section 4.5 that the peaks 
broaden quite rapidly as the wavevector q increases. As we enter this region the relation 
between a phonon dispersion curve and the measured spectrum cannot be assessed simply. 
However, in order to parametrize experimental spectra, we have fitted the observed peaks 
with the response of a damped harmonic oscillator convoluted with the instrumental 
resolution. The background was found to be flat and fixed to a constant value for all 
scans (% 7 counts min-I). Typical results of the fits obtained along the D-E line are 
presented in figure 5. 

Having performed these fits, we may report the results in the form of a 'pseudo- 
dispersion' relation in an extended zone scheme. The various shong r points, and the special 
points at pseudo-zone boundaries discussed in section 2, are indicated on these graphs. In 
doing this one assumes that when going out of the acoustic regime the same zone cenm 
may be used to define the wavevector q. This is partly justified by the continuity in the 
inelastic structure factor of the measured signal which has been experimentally observed 
(expression (6)). However, results should be discussed only in the term of the S(Q, o) 
function to be completely rigorous. Finally since calculations on realistic 3D models are in 
progress, the presentation of the experimental results will be essentially descriptive. 

We tum now to the presentation of the different dispersion relations measured in the 
twofold scattering plane. For the sake of simplicity, they are classified with respect to the 
strong Bragg peaks chosen as zone centres. 

4.2. Dispersion relations oround the r point D 

The first region of interest is around the point D. This Bragg reflection is very strong and 
occurs at high G value, which means that acoustic modes are expected to be very strong 
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(expression (6)). Moreover there is a medium-intensity reflection E that is close, the D-E 
direction being parallel to a fivefold axis. The pseudo-zone boundary between points D 
and E corresponds to an X, point, a point where one of the strongest gaps is expected 
(see table 2 and figure 2): this region seems thus to be favourable to look for a gap in the 
dispersion relation. 

When measuring acoustic phonons from D to E, q and Q are not orthogonal, so both the 
transverse and longitudinal acoustic modes propagating along a fivefold axis are measured 
(expression (6)): the longitudinal mode appears as a small shoulder in figure 5(a). Because 
of the relatively large crystal size, the acoustic mode associated with the r point E also 
gives a reasonable signal (figure 5(b)). The intensities of Bragg reflections D and E are in 
the ratio lO/l, in good agreement with the intensity ratio of corresponding phonons in the 
h e a r  acoustic regime (expression (6)). 

At the pseudo-zone boundary, where there is a crossing of the two acoustic branches, 
one would expect that a gap opens giving rise to an optic-like upper branch. At the X, point 
(9 = 0.35 k', figure 5(a) the measured excitation is still resolution limited (0.3 THz) and 
no such gap was actually detected. This means that a gap, if any, must have an energy 
width lower than 0.15 THz. 

However both acoustic branches can be followed after their crossing. In particular the 
signal associated with the Bragg D peak gives still a very clear contribution, even above 
the r point D (figure 5(b),  top panel). One has thus a situation where an acoustic mode 
and an excitation at higher energy coexist (figure 5(b), 9 = 0.15 A-' for instance). When 
such a situation occurs in a crystal, the upper branch is no longer an acoustic branch and 
must be called optic. In that sense, we have measured an 'optic' mode, but its labelling is 
obviously not possible. 

The corresponding dispersion curves are presented in figure 6. Note that the present 
result is different to what was observed in the i-AILiCu phase [31]. In that case the 
dispersion relation presents a maximum at the pseudo-zone boundary, with no other mode 
above the acoustic branch, in contrast to what is observed here. 

The response function was then measured along the line &E' (E' is the mirror image 
of E), corresponding to phonons propagating along the twofold direction. The distance 
between Bragg reflections is r times larger than for D-E. Since there is a mirror plane at 
the mid point of E-E' (denoted F) only half of the dispersion relation has been measured, 
the other half being deduced by symmetry. Here again one can follow the acoustic mode 
up to the pseudo-zone boundary. 

Around 3 THz there seems to be a slightly dispersive optic branch. Ln fact other 
measurements in this area showed that these modes could be well accounted for by acoustic 
phonons associated with the strong Bragg reflection D. When going from E to F, because 
of the scalar product eT,L) - Q (expression (6)) the relative conhibution of transverse and 
longitudinal modes will change in the response function S(Q, w). In E the main contribution 
is given by the transverse acoustic mode whereas in F the transverse acoustic mode makes 
no contribution to the signal and the longitudinal mode has a maximum intensity (in F ,  q 
and Q are parallel). These two branches are indicated by the labels L and T i n  figure 6. 

This interpretation was confirmed by measurements made between the Xs@-E) pseudo- 
zone boundary and F (figure 6). The notation Xs(D-E) refers to the pseudo-zone boundary 
located between the Bragg peaks D and E. When going from X5(D-E) to F the transverse 
mode associated with the T(D) point decreases in intensity and goes to zero, while the 
longitudinal mode becomes more intense. The relative intensity variation is in good 
agreement with the variation of the scalar product eT(L) Q. 

In the E-F region an optic mode, lying at 4 THz and dispersionless, is also measured. 
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Finally, longitudinal modes were measured smting from D in the direction of F (figure 6) 
thus completing a loop in this region of the reciprocal space. The dispersion curve clearly 
bends over around 3 THz. An optic mode, which is non-dispersive and lying around 4 THz, 
has also been identified. Moreover, the longitudinal acoustic phonon broadens quite rapidly, 
when its energy exceeds about 2 THz. Above that energy, excitations become so broad that 
the description in term of a damped harmonic oscillator is probably no longer appropriate. 
The observed lineshape could be accounted for using two oscillators. A more complete 
study of mode broadening will be presented in section 4.5 for transverse modes, where the 
energy resolution is better when working in the focusing geometry. 

This longitudinal dispersion curve along D-F is comparable to the measurements in the 
i-AILiCu phase [31], for which longitudinal modes become dispersionless though at a lower 
energy (i.e. around 2.5 THz). This was at variance with the behaviour observed in the 
approximant crystalline R phase and was interpreted as an indication of spatial localization 
of the corresponding ‘phonon modes’ in the quasicrystal. In effect, if spatial localization of 
modes occur, this leads to a non-dispersive branch. 

Figure 6 gathers all results in the area D-EF. The different acoustic and optic branches 
are easily traced out, when going from one direction to the other. At pseudo zone boundaries 
there is no evidence for gaps, even when branches cross. The picture which emerges from 
the study in this area is that there is a series of excitations, with a pronounced acoustic 
character (see the effect of e . Q), associated with two distinct r points (Jl and E) and 
which have an ‘independent’ behaviour, i.e. which do not ‘interact’. In some regions there 
is a clear dispersionless optic mode located at 4 THz When measuring the response function 
in other regions of the reciprocal space we will see that the situation is similar. 

4.3. Dispersion relation around the r point A 

Longitudinal and transverse modes were measured around the Bragg reflection A. In both 
cases the situation is quite similar to measurements made around point D. 

For longitudinal modes, going in the direction of the weak reflection B, one can measure 
two excitations: one corresponding to the longitudinal acoustic mode which becomes 
dispersionless around 3 THz, and an optic mode around 4 THz. Data and the componding 
dispersion curve are shown in figure 7 and figure 8. As can be clearly seen in figure 7 ,  the 
longitudinal acoustic mode broadens when it reaches an energy of about 2 THz. At the same 
time its dispersion relation is no longer linear, and tends rapidly towards a dispersionless 
excitation with an energy of 3 THz. At the same time a higher-energy optic mode located 
around 4 THz shows up. At higher momentum transfer, the excitations merge, and their 
separation becomes difficult. 

This 4 THz optic mode was mainly observed in ‘longitudinal’ geomeby, i.e. between 
D and F and between A and B. Note that the identification of this mode as longitudinal is 
tentative, because one needs to associate this excitation to a given zone centre in order to 
define the wavevector q properly. This can be done without ambiguity only for acoustic 
modes. If we suppose that the zone centre associated with this excitation is A, i.e. that the 
corresponding wavevector can be written q = Q - G(A), then from relation (4) one can 
deduce that this optic mode should have mainly a ‘longitudinal’ character, i.e. its pattern 
of atomic displacements is mainly parallel to the wavevector. But once again we point out 
the difficulty of interpreting the experimental results! 

Transverse mode measurements of phonons propagating in the [--T, 1, 01 direction show 
a smooth bending, similar to the transverse D mode (figure 12(e)). 



4957 Dynamics of the AlPdMn icosahedral phase 

Figure 7. Constant-Q scans measured between 
points A and B. Points represent experimental 
data and the full curves are llae result of the 

- fit with a damped harmonic oscillator. Because 
. of the relaxed out-of-plane resolution, both the 

transverse and the longiludinal acoustic modes 
show up. Notice the rapid broadening of the 
iongimdinal excitation for q larger than 0.2 A-'. 
Au optic mode, lofated around 4 T l b  also 
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4 2 

4.4. Dispersion relation around the r point D' 

The point D' is the symmetry equivalent of point D. In this region, two strong Bragg 
reflections, G and H, may give measurable acoustic modes. The duedons D% and D'-H 
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are parallel to a threefold axis. The pseudo-zone boundary corresponds to an L‘; special 
point. The dispersion relations are presented in figure 9. Both the longitudinal and the 
transveme acoustic modes propagating along a twofold axis are measured. 
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Fwre 9. (a)  Dispersion relation along the d i d o n  D’4 .  The acoustic ~ s v e r s e  mode, 
originating from D‘. bends over in the 3 T H z  energy range. No gap is visible at the wne 
boundary g. (b) Dispersion relation dong the direction D’-H. The lefl pan of the dispersion 
relation is similar to figure 9(a). In the right pan (G-H) WO or liuee modes are measured. 
The low-energy mode amund 2 THz is an acoustic branch arising from an out-of-plane Bragg 
reflection. Some of the data and results of the fit are shown in figure 10. 

Along the direction D’-G, the transverse acoustic branch can be followed up to the r 
point G (figure 9(a)). There is a pronounced bending of the dispersion curve when the mode 
reaches an energy of 3 THz: for this energy the mode becomes dispersionless. At the zone 
boundary point (Ly), the response function was still fitted by a single excitation, although 
this one is already relatively broad (phonon width 1 THz). Similar to what was observed in 
other regions, the inelastic structure factor deduced from the measured integrated intensity 
is almost constant for all q values. This justifies, aposreriori, the presentation of the results 
in the form of a ‘dispersion relation’. 

Measurements along the direction D’-H were performed at a final energy kf = 3.85 A-’ 
to allow the high-Q region of this scan to be reached With this setting the energy resolution 
is only about 1 THz. Since the resolution ellipsoid is much larger, intensities are collected 
from a large region in the (Q, w )  space and caution must be taken to analyse the data Results 
of the measurement are presented in figure 9(b). In the region D’-Lg the picture is quite 
similar to that previously described there is an acoustic longitudinal mode and a transverse 
acoustic mode propagating along the threefold axis. The transverse acoustic mode bends 
over when reaching the 3 THz energy region, similarly to what is observed in figure 9(a). 
The situation in the L;-H region is more complex. After the special point at least 
two. and then three, excitations are necessary to describe the measured response function. 
There is a low-energy mode around 7. THz which is probably related to a relatively strong 
Bragg reflection lying above the plane at a distance of 0.5 A-‘. When passing close to this 
peak the associated longitudinal acoustic mode shows up. The medium-energy excitation 
is related to the transvene acoustic mode associated with H, and the upper optic mode at 
3.54 THz may probably be seen as a ‘continuation’ of the transverse branch originating 
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and for measurement of transverse modes in the focusing geometry, the instrumental energy 
width is smaller than 0.3 THz. 

Figure 1 I shows the experimental results for transverse modes measured from poht D. 
The result of the fit is indicated by full curves. In the low-energy region the measured 
phonon has a width which is limited by the instrumental resolution and the dispersion 
relation is linear. From q = 0.4 A-' there is a clear broadening of the excitation. The 
linewidth of the phonon increases rapidly up to q = 0.7 A-' where it reaches a constant 
value of 1 THz. From q = 0.95 A-' the observed signal has been accounted for by two 
modes each with a width equal to 1 THz (see also figure 13(u)). Attempts to fit this signal 
with only one contribution gave a significantly worse result Similar measurements were 
made starting from D'. The positions of phonons together with their respective widths 
(after deconvolution from instrumental resolution) are reported in figure 12(a) and (b). In 
both cases the full width at half maximum (FWHM) increases rapidly between q = 0.4 A-' 
and q = 0.7 A-' and reaches an unusually large value of 1 THz. However the response 
function presents significant differences for q larger than 0.95 A-'. Whereas at least two 
phonons have to be considered in order to reproduce the signal observed in the D region, 
the response function in the D' region still can be accounted for by a single broad phonon 
( 1  THz width). This is illustrated in figure 13 where both constant-q = 0.95 A-' scans are 
shown: the D response function presents a plateau with relatively steep fall-off, reminiscent 
of a continuous distribution, whereas the signal in the D' region still has a Lorentzian shape 
and is well accounted for by a single phonon. Note also the difference in intensity: after 
background subtraction the maximum number of counts is about twice as large for the mode 
originating from D' than for the one originating from D. This result may seem puzzling 
since D and D' are equivalent twofold reflections. However, symmetry requirements do 
not impose the dispersion relation to be identical: this is because there is only a twofold 
symmetry axis and not a fourfold axis. In other words, it is not equivalent to look at the 
atomic structure along a twofold X axis and along a twofold Y axis. Regardless. the notion 
of dispersion relation becomes inappropriate in this region, and the only quantity to be 
considered is the response function: there is no reason why this quantity should be identical 
to both places. 

In order to check for anisotropy of this broadening, we also measured transverse modes 
propagating along other symmetry directions. Interestingly, anisotropy in the attenuation 
of sound waves was observed in measurements made on the same sample [48]. This was 
interpreted as resulting from a phonon-phason coupling. Therefore it is interesting to check 
whether such an anisotropy occurred for the observed phonon broadening. All results show 
the same feature: the low-energy acoustic modes are molution limited. and a rapid increase 
of the FWHM occurs around q = 0.4 A-'. No anisotropy could be detected. The results are 
shown in figure 12(c)-(e). 

Results for transverse phonons propagating along a fivefold [I, 5, 01 direction and 
associated with the r point D are shown in figure 12(c). This direction is the minor 
image of the D-E direction (figure I )  and q = 0.35 A-' is a special point of the Brillouin 
zone labelled X5. In contrast to figure 6 where two acoustic branches, associated with r 
points D and E, cross, only one branch originating from D is measured in figure lZ(c). 
because there is no other strong Bragg spot in this region (see figure 1 ) .  This might have 
been a more favourable experimental situation to observe a gap, but similar to what is 
observed in figure 6, no gap was detected. Figure 12(d)  shows the position and FWHM of 
phonons propagating along a threefold axis along the direction D'-G. Finally, figure lZ(e) 
shows the position and FWHM of phonons propagating along a I-r, 1, 01 direction from the 
point A. In all cases a rapid broadening occurs around q = 0.4 A-'. A similar broadening 
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of one tramverSe mode was previously reported in the AlCuFe icosahedral phase [33]. 
What is the origin of such a large broadening? Two quite different pmceses can 

lead to the same experimental result. On one hand, the broadening may result from the 
finite lifetime of the excitation, and the picture of the damped harmonic oscillator is a 
good approximation. This could be the result of anharmonicity or could simply reflect the 
difficulty for plane waves to propagate in a quasiperiodic medium. On the other hand the 
broadening can result from the superposition of several modes. One can imagine that there 
is a continuum of dispersionless modes which would then be picked up in the measurement 
In lhis case modes do not need to be damped; it is only the superposition of modes which 
give rise to the broadening. The very broad distribution that was measured for the higher- 
energy scans seems to be in agreement with the hypothesis of a continuous distribution. 
This picture is similar to what has been calculated in the ID case by Benoit et a1 [19], when 
for high energy a large number of modes spread over a noticeable range in energy show up 
in the response function S(Q, 0). Moreover a recent calculation pelformed by Poussigue 
er al [28] on an AlMn quasicrystal model shows that the icosahedral phase presents critical 
modes which form a continuum and lead to a broadening of the response function. The 
same calculation performed on a small approximant does not show the same broadening. 
The broadening we have experimentally observed is thus likely to be a signature of the 
quasicrystalline order. 

The situation is summarized in figure 14. In the low-energy part we have well defined 
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Figure 13. Comparison of the transverse mode measured at q = 0.95 
from D ( a )  and from W (b). There is a clear difference: two phonons are 
necessary Io fit the dah in (a). whereas only one phonon is visible in (b).  
The maximum intensity is also much larger in (b). 

Figure 14. General pi- of 
the dishibution of modes in the i- 
AlPdMn phase. At low energy 
acoustic modes m well defined and 
do not present any width. There 
is a continuous dishibution of optic 
modes in the range 2-4.5 THz 
When a phonon is measured in U i s  
region it is broad. 

acoustic phonons, with a long lifetime. In the region 24.5 THz, there is a continuum of 
optic modes. These modes do not show any dispersion and are localized. When the acoustic 
branch enters the ‘sea’ of optic modes, there is an interaction between the acoustic mode 
and the localized modes. This could be for instance anticrossing effects, which would result 
in a broadening of the response function S(Q, o), each time the acoustic branch crosses 
an optic one (391. An important point to notice is that the excitations we measured in this 
area still have an ‘acoustic’ character. In effect the intensity of the response function is 
still related to the intensity of the elastic structure factor of the Bragg reflection with which 
the excitation may be associated. Measurements performed in regions of the reciprocal 
space far from strong Bragg peaks do not show any signal except the background, which 
indicates that expression (6) still holds, although we are no longer in the linear regime. As 
a consequence, the wavevector p used in the pseudodispersion relation is probably still 
appropriate in this intermediate range. 

The wavevector of the phonons for which this broadening occurs is of the order 
9 = 0.5 A-’ corresponding to a wavelength of about 12 A. Interestingly enough, this 
is the same wavelength for which differences between the crystalline and the icosahedral 
phase were observed in the AlLiCu system. As was poinnted out by Goldman et ai [31], 
this distance corres onds to the inter cluster distances in AlLiCu phases. This is also the 
case here, and 12 is a typical inter-Mackay icosahedron distance along a twofold axis 
[361. The quasipericdic stacking of these clusters may be at the origin of the localization 
of the modes and their broadening. 

On the other hand, if one takes the picture of the damped hannonic oscillator in the 
region where the broadening starts, one also can have some indication of the important 
length scale. We consider the situation where transverse phonons sku? to broaden and reach 
a width equal to 0.5 THz. In this region, one still has well defined phonons whose group 
velocity is given by do/@. i.e. by the local slope of the dispersion relation: it is of the 
order of 2000 m s-’. A width of 0.5 THz corresponds to a lifetime t of the order of 
0.3 x IO-” s, to which is associated a characteristic length of the order of 6 A, Le. the 

i, 
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same order of magnitude as the one discussed previously. These are both strong indications 
that the basic structural elements that have to be considered when the broadening occurs 
have a size of order 10 A: this is precisely the size of the Mackay icosahedron and of their 
intercluster distances. They constitute 60% of the AlPdMn structure. 

Finally, it is interesting to compare the obtained dispersion relation with the integrated 
phonon density of states measured by Suck 1491 on a powder AlPdMn sample with a 
time of flight spectrometer. These are two main contributions in the measured density of 
state: one that is relatively narrow and has a maximum for an energy equal to 4.1 THz, 
and another which is broad and centred around E = I THz. The optic mode, which is 
measured in various places and lies around 4 THz, is in agreement with the lower peak in 
the experimental density of states. However attempts to measure higher-energy modes were 
unsuccessful: measurements performed in various regions of the reciprocal space did not 
show anything except a flat background in the region 5-8 THz. This is probably because in 
this region the modes are localized and spread over reciprocal space; the spatially averaged 
measurement performed on a time of flight instrument allows one to collect data with a 
greater statistical accuracy than using a triple-axis spectrometer. 

5. Conclusion 

The dynamical properties of the icosahedral AlPdMn phase have been measured by inelastic 
neutron scattering on a single grain. 

In the long-wavelength limit there are well defined phonons whose width is limited by 
the instrumental resolution. As for other icosahedral phases, the isotropy of accoustic Modes 
in i-AIPdMn h p  been verified. The corresponding sound velocities are in good agreement 
with ultrasonic measurements performed on the same sample. This is the only region where 
the link between the measured response function and a given ‘phonon branch’ may be made 
without ambiguity. 

At higher wavevector one would expect the opening of gaps. The regions where the 
strongest gaps are expected have been estimated using a perturbative approach and the 
known atomic structure. This defines a succession of pseudo-Brillouin zone boundaries 
which are quasiperiodically stacked. In principle all Bragg reflections may be chosen as 
zone centres, but only the strongest ones are of importance. 

Attempts to observe such gaps at various points of the reciprocal space were 
unsuccessful. Even when two branches cross, no gap could be measured. This means 
that gaps, if present, have energy widths lower than 0.15 GHz. 

Rigorously speaking it is no longer possible to discuss a dispersion relation outside the 
acoustic regime. However in the present experiment, all the measured signals could be 
associated with a relatively strong Bragg reflection, since the inelastic integrated intensity 
scales as the elastic Bragg peak intensity. This leads to a natural choice of these reflections 
as zone centres and allows the description of the results in term of ‘dispersion relations’. 
This statement is probably only valid in an intermediate range. The general tnnds of the 
measured response function may be summarized as follows. 

For ‘longitudinal’ polarization, the acoustic mode broadens quickly, when it reaches an 
energy of about 2 THz. At the same time the dispersion no longer shows a linear character, 
but bends over rapidly towards a 3 THz value where it becomes dispersionless. A well 
defined excitation, which is dispersionless, also shows up at an energy of 4 THz. Since this 
excitation does not show up in the transverse geometry, we assign it a ‘longitudinal optic’ 
label. For higher wavevectors these excitations merge to form a continuum. 
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For ‘transverse’ polarization and for wavevectors lower than 0.8 A-’ the behaviour of 
the response function is similar when observed around several strong Bragg peaks and for 
various directions of the wavevector. Starting from q = 0.35 A-’ the measured phonon 
broadens rapidly and its width reaches a value of 1 THz. This broadening has been found 
to be isotropic. At the same time the dispersion relation departs significantly from a linear 
behaviour and bends over. 

At higher wavevector, i.e. 9 > 0.8 A-’, the response function with a transverse 
‘polarization’ shows significant differences depending on location in reciprocal space. ’ b o  
quite different behaviours have been observed. In one case the response function can be 
fitted by a single broad excitation ( I  THz FWHM) up to a q value of 1.4 A-’. The energy 
of this excitation reaches a maximum of 3 THz at which value the excitation becomes 
dispersionless. In the other case, the response function continues to broaden and at least 
two excitations, each with a 1 THz width and centred on 2.7 and 4 THz, are necessary to 
describe the data 

We interpret these results as the consequence of an almost continuous distribution of 
dispersionless modes in the range 2-4.5 THz. This picture is summarized in figure 14. For 
the low-energy part we have well defined acoustic longitudinal and transverse modes. When 
these modes enter the ‘sea’ of optic modes (shaded area), an interaction between optic and 
acoustic modes occurs, which give rise to the broadening of the measured excitation. At 
higher 9 this region may be split in two ‘optic bands’, centred on 3 and 4 THz. Depending 
on the polarization and on the location in reciprocal space one or both of these bands are 
active. 

It is interesting to compare these results to available data. At one extreme of the spectrum 
of atomic structures, we have the simplest crystalline structure which is the pure FCC Al. Its 
dispersion relations have been extensively measured [50]. In the long-wavelength limit it 
is interesting to note that both longitudinal and transverse sound velocities have almost the 
same values as those of the icosahedral phase. There are two different acoustic transverse 
modes but the difference between the sound velocities of these two modes is weak and 
drawing the AI dispersion curves on figure 14 would perfectly match the results (this is 
hopefully not the case with the high precision obtained in the ultrasonic measurements). 
At shorter wavelength. the phonon width is one order of magnitude smaller than in the 
icosahedral phase. There is almost no dependence of this width on the wavevector. The 
dispersion relation is also quite different: the bending of the dispersion relation occurs at a 
much higher energy and the region 0-4 THz the dispersion relation of pure AI departs only 
slightly from the linear regime. 

At the other extreme of the spectrum we have the amorphous metallic materials. In this 
case 1.511 and for wavevectors accessible with neutrons, the excitations are very broad even 
for small wavevectors. Moreover. since there is no long-range order, measurements can 
only be performed close to the origin, and dispersion relations do not have a clear meaning. 

In between we find the disordered alloys. In these systems, an atom is located at random 
on a periodic (in general simple) host lattice. The introduction of this disorder breaks 
the periodicity and gives rise do diffuse scattering in the diffraction pattem. However 
there are still Bragg peaks, since we have an underlying lattice [52].  There might be 
some similarities with the problem of quasicrystals, although we emphasize once again 
that quasicrystals are highly ordered long-range structures. Because of the mass defects in 
these disordered systems, local modes are present. This shows up in the response function, 
which presents a broadening of the excitations when one goes outside the acoustic regime. 
The final broadening is comparable to what is observed here (i.e. of the order of 1 THz), 
but there is more structure as a function of q. Moreover, the energy positions of these 
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excitations follows closely the dispersion curve of the pure host crystal and do not present 
a dispersionless character, in contrast to the icosahedral case. 

We believe that the results we have obtained in the i-APdMn phase are a characteristic 
feature of the icosahedral state. The picture we propose (figure 14) is in agreement with 
the ID calculation performed by Benoit et Q! 1191, and also with more recent calculations 
performed on a realistic 3D model [28]. This is also compatible with the results obtained 
by Los et nl [26], where the calculated dispersion relations show a large number of optic 
modes in the high-energy region. 

When the broadening of the acoustic modes begins, both the width of the phonon and the 
wavelength of the wavevector indicate that the characteristic atomic length scale involved is 
of the order of 10 A. This is precisely the size of the Mackay icosahedron and intercluster 
bound length. It has been shown that such clusters do exist in the AlPdMn phase and are 
hierarchically packed. The hierarchical and quasiperiodic packing of these clusters might 
be at the origin of the localization of the phonons. 

The interpretation of the present experimental results is only very tentative and needs to 
be confirmed by more detailed calculations on a realistic atomic model. This is in progress. 
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